当前位置:首页>实战VIP项目> 零基础AI入门实战(深度学习+Pytorch),AI必备基础

零基础AI入门实战(深度学习+Pytorch),AI必备基础

零基础AI入门实战(深度学习+Pytorch),AI必备基础通俗易懂零基础入门案例实战跨专业提升课程内容:001-课程介绍.mp4002-1-神经网络要完成的任务分析.mp4003-2-模型更新方法解读.mp4004-3-损失函数计算方法.mp4005-4-前向传播流程解读.mp4006-5-反向传播演示.mp4007-6-神经网络整体架构详细拆解.mp4008-7-神经网络效果可视化分析.mp4009-8-神经元个数的作用.mp4010-9-预处理与dropout的作用.mp4011-1-卷积神经网络概述分析.mp4012-2-卷积要完成的任务解读.m

零基础AI入门实战(深度学习+Pytorch),AI必备基础

零基础AI入门实战(深度学习+Pytorch),AI必备基础

通俗易懂

零基础入门

案例实战

跨专业提升

课程内容:

001-课程介绍.mp4

002-1-神经网络要完成的任务分析.mp4

003-2-模型更新方法解读.mp4

004-3-损失函数计算方法.mp4

005-4-前向传播流程解读.mp4

006-5-反向传播演示.mp4

007-6-神经网络整体架构详细拆解.mp4

008-7-神经网络效果可视化分析.mp4

009-8-神经元个数的作用.mp4

010-9-预处理与dropout的作用.mp4

011-1-卷积神经网络概述分析.mp4

012-2-卷积要完成的任务解读.mp4

013-3-卷积计算详细流程演示.mp4

014-4-层次结构的作用.mp4

015-5-参数共享的作用.mp4

016-6-池化层的作用与效果.mp4

017-7-整体网络结构架构分析.mp4

018-8-经典网络架构概述.mp4

019-1-RNN网络结构原理与问题.mp4

020-2-注意力结构历史故事介绍.mp4

021-3-self-attention要解决的问题.mp4

022-4-QKV的来源与作用.mp4

023-5-多头注意力机制的效果.mp4

024-6-位置编码与解码器.mp4

025-7-整体架构总结.mp4

026-8-BERT训练方式分析.mp4

027-1-PyTorch框架与其他框架区别分析.mp4

028-2-CPU与GPU版本安装方法解读.mp4

029-1-数据集与任务概述.mp4

030-2-基本模块应用测试.mp4

031-3-网络结构定义方法.mp4

032-4-数据源定义简介.mp4

033-5-损失与训练模块分析.mp4

034-6-训练一个基本的分类模型.mp4

035-7-参数对结果的影响.mp4

036-1-任务与数据集解读.mp4

037-2-参数初始化操作解读.mp4

038-3-训练流程实例.mp4

039-4-模型学习与预测.mp4

040-1-输入特征通道分析.mp4

041-2-卷积网络参数解读.mp4

042-3-卷积网络模型训练.mp4

043-1-任务分析与图像数据基本处理.mp4

044-2-数据增强模块.mp4

045-3-数据集与模型选择.mp4

046-4-迁移学习方法解读.mp4

047-5-输出层与梯度设置.mp4

048-6-输出类别个数修改.mp4

049-7-优化器与学习率衰减.mp4

050-8-模型训练方法.mp4

051-9-重新训练全部模型.mp4

052-10-测试结果演示分析.mp4

053-4-实用Dataloader加载数据并训练模型.mp4

054-1-Dataloader要完成的任务分析.mp4

055-2-图像数据与标签路径处理.mp4

056-3-Dataloader中需要实现的方法分析.mp4

057-1-数据集与任务目标分析.mp4

058-2-文本数据处理基本流程分析.mp4

059-3-命令行参数与DEBUG.mp4

060-4-训练模型所需基本配置参数分析.mp4

061-5-预料表与字符切分.mp4

062-6-字符预处理转换ID.mp4

063-7-LSTM网络结构基本定义.mp4

064-8-网络模型预测结果输出.mp4

065-9-模型训练任务与总结.mp4

066-1-基本结构与训练好的模型加载.mp4

067-2-服务端处理与预测函数.mp4

068-3-基于Flask测试模型预测结果.mp4

069-1-视觉transformer要完成的任务解读.mp4

070-1-项目源码准备.mp4

071-2-源码DEBUG演示.mp4

072-3-Embedding模块实现方法.mp4

073-4-分块要完成的任务.mp4

074-5-QKV计算方法.mp4

075-6-特征加权分配.mp4

076-7-完成前向传播.mp4

077-8-损失计算与训练.mp4

下载权限
查看
  • 免费下载
    评论并刷新后下载
    登录后下载
  • {{attr.name}}:
您当前的等级为
登录后免费下载登录 小黑屋反思中,不准下载! 评论后刷新页面下载评论 支付以后下载 请先登录 您今天的下载次数(次)用完了,请明天再来 支付积分以后下载立即支付 支付以后下载立即支付 您当前的用户组不允许下载升级会员
您已获得下载权限 您可以每天下载资源次,今日剩余
温馨提示:本文最后更新于 2024-02-13 14:15 ,某些文章具有时效性,若有错误或已失效,请在下方留言或联系1721366014
版权声明

站内部分内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请 联系我们 一经核实,立即删除。并对发布账号进行永久封禁处理。


本站仅提供信息存储空间,不拥有所有权,不承担相关法律责任。

给TA打赏
共{{data.count}}人
人已打赏
实战VIP项目

携程运营实战课,帮助你的酒店营收增长,手把手教你做携程

2024-2-13 14:09:37

实战VIP项目

【信念为王】365天保姆级陪练,镜头表现力登顶必修课

2024-2-13 14:20:21

!
也想出现在这里? 联系我们
内容广告区块
0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索
联系我们